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Abstract 12 

Emergent constraints are physically explainable empirical relationships between 13 

characteristics of the current climate and long-term climate prediction that emerge in 14 

collections of climate model simulations. With the prospect of constraining long-term 15 

climate prediction, scientists have recently uncovered several emergent constraints 16 

related to long-term cloud feedbacks and climate sensitivity. We review a number of 17 

these proposed emergent constraints, many of which involve the behavior of low-level 18 

clouds, and discuss criteria to assess their credibility. With further research, the cases we 19 

review may eventually become true emergent constraints, as they each have candidate 20 

physical explanations that are credible.  21 

Because credible emergent constraints identify a source of model error that projects onto 22 

climate predictions, they deserve extra attention from those developing climate models 23 

and climate observations. While a systematic bias cannot be ruled out, it is noteworthy 24 

that the more credible potential emergent constraints suggest larger cloud feedbacks and 25 

climate sensitivity.  26 
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1. What is an emergent constraint? 27 

When combined with the power of human mind to assess the physical plausibility of their 28 

predictions, comprehensive climate models are the most powerful tools available to 29 

predict future climate and its response to radiative forcings such as the anthropogenic 30 

increase in greenhouse gases. Unfortunately model predictions for key metrics of climate 31 

change do not converge to a single value. The most prominent example is the climate 32 

sensitivity, defined as the equilibrium warming resulting from a doubling of carbon 33 

dioxide.  It varies by at least a factor of 2 in the most recent collection of models used for 34 

climate change assessment (IPCC 2013), much as it has in all past model collections. 35 

In this situation, scientists attempt to assess the relative credibility of model predictions 36 

using their insight. Often they appeal to the principle that models unable to predict past 37 

climate variations skillfully should not be trusted for future climate predictions. However, 38 

with past climate variations such as the global warming of the past century, or glacial-39 

interglacial transitions of the Pleistocene, there are uncertainties in the observed forcing 40 

as well as the response. In addition, past climate forcings differ in important ways from 41 

that resulting from changes in carbon dioxide alone. Thus, past climate variations are an 42 

incomplete lens through which to judge the credibility of a climate model’s future 43 

predictions. More practically, they do not offer the ability to appreciably narrow the 44 

range of climate sensitivity estimates beyond that of the models (Kiehl 2007, Knutti 45 

2008, Masson-Delmotte et al. 2013). 46 
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The climate of the past few decades is well observed enough to characterize basic 47 

statistics of key climate variables such as mean state, variability, and trends. A more 48 

basic if less direct principle than verifying the models against past climate response to 49 

external forcing is that models failing to reproduce these statistics should not be trusted 50 

for future climate prediction. Past attempts following this line of reasoning suggest 51 

climate sensitivities in the upper half of the currently accepted range are more realistic 52 

(Murphy et al. 2004, Knutti et al. 2006, Huber et al. 2011). But which aspect of the 53 

current climate is important for its climate prediction? It seems intuitive that realistic 54 

simulation of the current climate for variable x (temperature, clouds, or something else) 55 

would lead to a more believable prediction of the change in x. But there is no evidence 56 

this has to be true, and the processes shaping future response in x may be quite distinct 57 

from those shaping x in the current climate. For example, the water vapor, lapse rate, 58 

surface albedo, and cloud feedbacks determining climate sensitivity are not the most 59 

important processes determining the current climate’s geographical and seasonal 60 

temperature distribution, a common observational target for climate model development. 61 

This raises the question as to whether there is any better way to decide which quantities 62 

of the current climate are relevant for climate change. 63 

So-called ‘emergent constraints’ answer this question by examining the inter-model 64 

spread that emerges in collections of climate models such as those assembled for the 3rd 65 

and 5th phases of the Coupled Model Intercomparison Project (CMIP) (Meehl et al. 2005, 66 

Taylor et al. 2012). Specifically, an emergent constraint is a strong empirical relationship 67 

between inter-model variations in a quantity describing some aspect of recent observed 68 
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climate and the inter-model variations in a future climate prediction of some quantity.  69 

Once combined with an observational estimate of the quantity from the current climate, 70 

the future prediction may be constrained provided (a) the observational uncertainty is less 71 

than the inter-model spread, (b) the observed value falls within the range of model 72 

results, and (c) the future climate quantity is a single-valued function of the current 73 

climate quantity. However, because the constraint may be fortuitous, a relationship 74 

should not be termed an emergent constraint unless it is accompanied by a plausible 75 

physical explanation and satisfies other additional criteria (to be proposed below).  76 

The earliest and still most robust emergent constraint is that for the snow-albedo 77 

feedback (Hall and Qu 2006, Qu and Hall 2014). A strong linear relationship exists 78 

between (a) inter-model spread in the seasonal cycle change in surface albedo over 79 

northern hemisphere land per degree surface warming and (b) the change in surface 80 

albedo per degree surface warming in simulations of climate warming resulting from 81 

increases in greenhouse gases (Figure 1). Considering an observational estimate of the 82 

seasonal cycle change, a surface albedo feedback in the middle range of model results 83 

would seem to be more likely.   The underlying physical assumption is that the modeled 84 

physical processes of how surface albedo changes with the large warming during the 85 

seasonal cycle are manifest for the smaller warming associated with climate change. This 86 

physics is corroborated by the fact that in the contexts of both seasonal cycle and climate 87 

changes, the feedback is controlled mainly by the simulated surface albedo in snow-88 

covered areas. More recently, Cox et al. (2013) have identified an emergent constraint for 89 

the global warming sensitivity of carbon stored in tropical lands from the sensitivity of 90 
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the annual CO2 growth rate to inter-annual tropical temperature anomalies. However, 91 

the robustness of this constraint has been questioned using a different model ensemble 92 

(Wang et al. 2014). 93 

Given its overwhelming importance, climate sensitivity has proven an attractive target for 94 

research on emergent constraints. Since cloud feedbacks are a leading contributor to 95 

inter-model spread in climate sensitivity (IPCC 2013), emergent constraints for climate 96 

sensitivity necessarily include cloud feedbacks either directly or indirectly. However, 97 

cloud processes may be significantly more complex than processes for which robust 98 

emergent constraints have already been found, such as surface albedo feedback. For this 99 

reason, we begin by suggesting strict reliability criteria that could be used to gauge the 100 

significance and credibility of any proposed emergent constraint on cloud feedback. 101 

Then, we review recently proposed emergent constraints for cloud feedbacks and climate 102 

sensitivity. The final section will discuss the implications of emergent constraints for 103 

model development, observational science, and climate prediction. 104 

2. Reliability criteria for emergent constraints 105 

The correlation underlying all potential emergent constraints could simply be 106 

coincidental. On what basis could one declare the correlation a true emergent constraint? 107 

We offer the following reliability criteria. 108 
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Strong physical basis. Foremost is the need for a physical explanation of the empirical 109 

relationship between current and future climate parameters. This should account for how 110 

differences in model structure contribute similarly to spread in the current and future 111 

parameters. The physical understanding should also explain why the relationship exists 112 

(or not) across the time-scales spanning the current climate and future climate change 113 

(e.g. daily, seasonal, inter-annual, or inter-decadal). 114 

The challenges here are two-fold. The first is identifying a physical mechanism. Ideally, 115 

this should point to specific physical parameters, parameterizations, or their interactions. 116 

Furthermore, the physical understanding should permit quantitative explanation of inter-117 

model variations in current and future climate parameters. Ideally, it should also be 118 

possible to assess which model parameterizations are more reliable through comparison 119 

with observations. In the case of cloud feedback, benchmark models such as Large-Eddy 120 

Simulations (LES), simulations by very high-resolution limited-area models that resolve 121 

the fine-scale circulations that form clouds, may substitute for observations given that 122 

observations of complex cloud processes are insufficient. 123 

The second challenge is demonstrating convincingly that the physical mechanism is at 124 

work in the model ensemble. This requires either in-depth diagnostics or model 125 

experimentation, or both. For diagnostics, the existing model archives are often 126 

insufficient or incomplete. For cloud feedbacks, examples of the necessary diagnostics 127 

include parameterization-specific quantities such as the tendencies for individual 128 
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processes such as large-scale cloud microphysics and macrophysics, shallow 129 

convection, deep convection, turbulence and large-scale dynamics (Ogura et al. 2008).  130 

Direct model experimentation is a more powerful way to demonstrate the physical basis 131 

of an emergent constraint. For example, if the cause of inter-model variations can be 132 

traced to parameterization of a single process, current climate and climate change 133 

simulations could be performed with alterations to that parameterization. Even if a single 134 

parameterization cannot be isolated, some support for a physical mechanism could come 135 

through testing the physical processes likely to be involved, such as cloud physics, 136 

convection, turbulence, or radiation. Testing can be performed by perturbing fixed 137 

parameters (Murphy et al. 2004, Klocke et al. 2011) or replacing whole parameterizations 138 

in a single model (Watanabe et al. 2012, Zhao 2014). Coordinated multi-model 139 

experiments such as those organized by the Cloud Feedback Model Intercomparison 140 

Project (Bony et al. 2011) disable or alter various model components, such as the 141 

parameterizations of convection or cloud radiative effects (Fermepin and Bony 2014, 142 

Webb et al., The impact of parametrized convection on cloud feedback, in preparation). 143 

Because they sample greater model structural diversity, such experiments are potentially 144 

more valuable than those involving perturbations to a single model. Ultimately, all model 145 

experimentation is convincing only if it is simultaneously connected to a physical 146 

mechanism that explains how the model changes contribute similarly to inter-model 147 

variations in current and future climate parameters. 148 
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A plausible physical explanation is by far the most important criterion for an emergent 149 

constraint. However, when a physical explanation is only partially developed, the 150 

following two subsidiary criteria can also be considered, in the sense that if they are 151 

satisfied, they make it more likely that a compelling physical explanation exists. 152 

Robustness to choice of model ensemble. Except in the unlikely case that the modeling 153 

groups had simultaneously learned of an emergent constraint and substantially removed 154 

inter-model spread in the associated current climate predictor, one would expect an 155 

emergent constraint to be manifest in the various collections of climate models (e.g. 156 

CMIP3 and CMIP5). Similarly, in absence of a physical explanation, one must view with 157 

suspicion an emergent constraint that appears in a perturbed-parameter ensemble of one 158 

climate model but not in the structurally more diverse CMIP ensembles (Klocke et al. 159 

2011). 160 

No obvious multiple influences. It is difficult to establish the robustness of an emergent 161 

constraint for quantities subject to multiple influences. An illustrative example is the case 162 

of equilibrium climate sensitivity, which depends on a number of independent feedbacks. 163 

Each of these contributes to inter-model variance (Webb et al. 2012). It would not be 164 

appropriate to seek an emergent constraint for climate sensitivity. Even if one could find 165 

correlated current and future climate parameters in this case, one might declare a model 166 

that agreed with observations due to compensating errors in the underlying feedbacks to 167 

be more realistic than a model that did not agree with observations due to a bias in one 168 

feedback even though all of the other feedbacks were correct. Clearly, forcing the models 169 
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to be realistic in the current climate parameter would not necessarily lead to a spread 170 

reduction in climate sensitivity for the right reasons, if at all. So the proposed emergent 171 

constraint would have little value.  It is only valuable to seek emergent constraints that 172 

target individual processes, such as the snow-albedo feedback or aspects of cloud 173 

feedback.  174 

In the case of cloud feedback, the inherent complexity of cloud physics makes it is 175 

difficult to find emergent constraints that target individual processes. One reason we find 176 

the well-developed examples in this paper compelling is that they are modest in scope, 177 

targeting a minimal number of cloud processes. Also, each of these well-developed 178 

examples shows some promise that further research will reveal a single mechanism 179 

generating most of the correlation between current and future climate parameters, leading 180 

to a true emergent constraint.  181 

A comment about correlation strength. Because emergent constraints rely on statistical 182 

correlations across a model ensemble, one might be tempted to also consider statistical 183 

aspects such as the variance explained and insensitivity to outlier models in judging the 184 

reliability of an emergent constraint. However, in absence of physical explanation, we do 185 

not think it helpful to consider statistical aspects given the ever-present possibility that 186 

the emergent constraint arises through a fortuitous correlation. Indeed, Caldwell et al. 187 

(2014) have shown that after accounting for the lack of model independence, the 188 

distribution of correlation coefficients of a large ensemble of current climate predictors 189 

with CMIP5 equilibrium climate sensitivity is indistinguishable from that arising by 190 
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chance alone. Thus, even large correlations can arise by chance in an ensemble. Of 191 

course, a higher correlation between current and future climate parameters will 192 

correspond to a larger spread reduction in the future climate projections when an 193 

emergent constraint is found, and models are eventually constrained with it. In this sense, 194 

a high correlation is desirable and even necessary if the emergent constraint is to have 195 

practical value, and all the examples we discuss here involve reasonably high 196 

correlations. However it cannot be considered a basis for the reliability of a particular 197 

candidate emergent constraint.  198 

3. Recent examples 199 

a. Low-level cloud optical depth 200 

Building on earlier work (Tselioudis et al. 1992, Tselioudis et al. 1998), Gordon and 201 

Klein (2014) identified a possible emergent constraint for the optical depth of low-level 202 

clouds, a quantity proportional to a cloud’s reflectivity. In this case, the current climate 203 

parameter is a model’s sensitivity of optical depth to local surface temperature derived 204 

from variability at time-scales of daily to inter-annual in a number of different climate 205 

regimes. The future climate parameter is the relative amount of optical depth change in a 206 

model’s climate change simulation (Figure 2a). Distinguishing by regime is necessary as 207 

it turns out that the change in optical depth for local temperature increases is generally 208 

positive when clouds are cold (for example, in polar and sub-polar regimes), while it only 209 

changes by small amount and is generally negative when the clouds are warm (for 210 
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example, in the tropics). This differing behavior is present both in the climate change 211 

simulations and in the current climate.  212 

In climate regimes such as the middle-latitude and polar regions, the correlation is quite 213 

high (r = 0.85/0.80, respectively) although the estimate from the current climate predicts 214 

too large a change in low-level cloud optical depth in some regions. (Note the general but 215 

not universal departure of each regime’s collection of points from the one-to-one line.) 216 

The available satellite observations from Tselioudis et al. (1992) also show the same 217 

tendency of a positive temperature derivative at cold temperatures and a weak or negative 218 

one at warm temperatures. However, except perhaps at the coldest temperatures, the 219 

models have a positive bias relative to the observations, suggesting the models increase 220 

cloud optical depth too much with warming. Since the shortwave effects of low-level 221 

cloud optical depth changes outweigh their longwave effects at the top-of-the-222 

atmosphere, this suggests simulated low-level cloud feedbacks should be more positive. 223 

The increase in optical depth with temperature for cold clouds may stem from 224 

fundamental thermodynamics. The adiabatic cloud liquid water content increases 225 

appreciably with temperature at cold temperatures (Betts and Harshvardhan 1987). 226 

Consistent with this reasoning, the cloud water content of low-level clouds also exhibits 227 

‘emergent constraint’ like behavior (Figure 2b). At cold temperatures, the multi-model 228 

mean temperature derivative of water content derived from current climate variability is 229 

close to that predicted by thermodynamics theory assuming adiabaticity (Gordon and 230 

Klein 2014). Other factors, such as the change from ice or mixed-phase cloud to more 231 
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liquid dominant clouds (Tsushima et al. 2006), may contribute to inter-model spread 232 

and the models’ positive bias with respect to observations.  233 

At warm temperatures, the water-content-induced change under adiabatic conditions 234 

becomes very small. Correspondingly models do not generally exhibit optical depth 235 

increases with warming. The models’ small optical depth decreases with warming and 236 

even larger decreases in observations must result from a different mechanism. Taking 237 

guidance from models that resolve cloud processes, LES of subtropical stratocumulus 238 

suggest the decreases in cloud optical depth with warming are due to cloud thinning. The 239 

thinning results from greater efficiency of convective mixing with dry air above the 240 

boundary layer upon warming (Rieck et al. 2012, Bretherton et al. 2013, Bretherton and 241 

Blossey 2014). Climate models may underestimate the observed decrease in optical depth 242 

with warming for warm low-level clouds because this mechanism is too weak or absent. 243 

At higher latitudes, the lack of this mechanism might also contribute to the model’s 244 

positive bias to the increase in optical depth with warming. Indeed, to fully accept this as 245 

an emergent constraint, future work is needed to isolate the relative roles of adiabatic 246 

water content changes, phase partitioning, and convective mixing in contributing to inter-247 

model variations in the temperature sensitivity of optical depth. This is needed to be sure 248 

that if a model were tuned to match the observed temperature of sensitivity of optical 249 

depth that it would be for the right physical reasons. 250 

b. Subtropical marine low-level cloud cover 251 
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Changes in cloud cover are more important contributors to inter-model spread in cloud 252 

feedbacks than changes in cloud optical depth (Zelinka et al. 2012). Studies have 253 

consistently found the differing climate responses of subtropical and tropical marine 254 

boundary layer clouds to be most responsible for inter-model spread in global mean cloud 255 

feedbacks (Boucher et al. 2013).  For these clouds, Qu et al. (2014) have identified a 256 

potential path to an emergent constraint through examination of inter-model spread in 257 

climate model simulations of low-level cloud cover (LCC) changes over subtropical 258 

subsidence regions where stratocumulus and cumulus predominate.  259 

Qu et al. (2014) analyzed the LCC changes from 21st century climate model simulations 260 

with the following framework: 261 

 262 

In this equation, Δ refers to the climate change over the 21st century in climate model 263 

simulations, whereas the partial derivatives are sensitivities of LCC to two large-scale 264 

environmental parameters: the Estimated Inversion Strength (EIS, Wood and Bretherton 265 

2006) of the temperature inversion capping the boundary layer, and Sea Surface 266 

Temperature (SST). These sensitivities are derived from inter-annual variability in current 267 

climate simulations. This model is similar to that used by Gordon and Klein (2014) for 268 

optical depth changes discussed in Section 3a, except that it includes an additional 269 

environmental parameter, EIS. Nonetheless, it turns out that the EIS parameter is not that 270 

ΔLCC = ∂LCC
∂EIS SST

×ΔEIS + ∂LCC
∂SST EIS

×ΔSST
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essential, as most inter-model variance in the 21st century LCC change can be explained 271 

by the SST term and the SST sensitivity (Figure 3). It is possible to derive a satellite-based 272 

observational estimate for the sensitivity of LCC to SST, using inter-annual variability 273 

over the last 30 years.  If the models agreed with these observations, their 21st century 274 

LCC decreases would be in the larger end of the model range, favoring more absorption 275 

of solar radiation in the future, and larger climate sensitivities. Earlier work by Bony and 276 

DuFresne (2005) on the correlation between inter-annual variability of shortwave cloud 277 

radiative effect and SST (their Figure 4) also hinted that subtropical low-level cloud 278 

feedbacks should be towards the larger end of model results.  279 

An underlying assumption of this framework is that since the time scales associated with 280 

low-level cloud formation and dissipation processes are on the order of hours, low-level 281 

clouds must be in statistical equilibrium with large-scale environmental factors whose 282 

inherent timescales are order of days or longer (Stevens and Brenguier 2009). There is 283 

ample observational evidence for an association between LCC and EIS (Wood and 284 

Bretherton 2006), including evidence that the direction of causation is primarily from EIS 285 

to LCC (Klein et al. 1995), rather than the reverse. Furthermore, the physical mechanism 286 

by which EIS influences LCC is clear, namely, stronger inversions inhibit the mixing of 287 

dry free-tropospheric air into the boundary layer, keeping boundary layer relative 288 

humidity and thus LCC higher. However, the physical mechanism by which SST 289 

influences LCC (at fixed EIS) needs better elucidation. One possibility is that the LCC 290 

sensitivity to SST can be viewed as a surrogate for the sensitivity of LCC to the vertical 291 

gradient in specific humidity from the surface to above the boundary layer, given that 292 
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variations in this quantity ought to be highly correlated with changes in SST. Indeed, 293 

LES analyses suggest that the increased vertical gradient in specific humidity is essential 294 

to the positive low-cloud feedbacks with SST warming. Specifically, with the increased 295 

turbulent vertical flux of water within the boundary layer in a warmer climate, less cloud 296 

is needed to produce a given amount of mixing across the inversion (all under conditions 297 

of no large EIS increases) (Bretherton and Blossey 2014). If so, this could be the physical 298 

mechanism behind the tendency, seen in LES models and observations, of an LCC 299 

decrease with increasing SST, under conditions of fixed EIS.  300 

Qu et al. (2014) also showed that a significant reason some models underestimate the SST 301 

component of the LCC response is that they rely on so-called Slingo (1980)-like cloud 302 

parameterizations. These parameterizations predict LCC variations purely in terms of 303 

changes in lower tropospheric stability (which is closely related to EIS), based on 304 

observational evidence that EIS accounts for a significant fraction of LCC variance in the 305 

current climate. However, slaving LCC to lower tropospheric stability probably inhibits a 306 

model from simulating dependencies on other variables that may be more important for 307 

climate change response (Qu et al. 2014, Bretherton et al. 2013). It may make the most 308 

sense to parameterize LCC in terms of local relative humidity or total water relative to 309 

saturation, and let the resultant sensitivity of the boundary layer physics to environmental 310 

parameters determine how LCC will vary. 311 

c. Lower tropospheric mixing and climate sensitivity 312 
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Mixing between the boundary layer and the free troposphere plays a central role in low-313 

level cloud variations. So it is natural to ask if there is a relationship between a climate 314 

model’s skill in simulating that mixing and its low-level cloud changes associated with 315 

climate change. Sherwood et al. (2014) follow this line of reasoning. Their potential 316 

emergent constraint also suggests that climate sensitivity is in the upper end of the model-317 

simulated range (Figure 4). To measure simulated lower tropospheric mixing, Sherwood 318 

et al. (2014) consider both mixing at cloud scales resulting from parameterized 319 

circulations, and mixing resulting from resolved shallow-depth, large-scale circulations 320 

(Figure 5). The cloud-scale mixing is measured with an indirect method focusing on the 321 

vertical gradient of temperature and moisture between 700 and 850 hPa in the west 322 

Pacific warm pool. They argue that greater cloud-scale mixing will result in this layer 323 

being less stable, with a smaller decrease in relative humidity with height. Large-scale 324 

mixing is measured through the resolved vertical mass-flux in circulations encompassing 325 

the boundary layer and the lower troposphere. Such shallow circulations have been 326 

observed in the Eastern tropical Pacific and tropical Atlantic (Zhang et al. 2008), and it is 327 

in these regions that Sherwood et al. (2014) measure their simulated strength.   328 

Combining normalized measures of cloud-scale and large-scale lower-tropospheric 329 

mixing, a lower tropospheric mixing index (LTMI) is defined. This index is found to have 330 

a positive correlation with a model’s climate sensitivity. Correlations of LTMI with the 331 

climate changes in low-level clouds are also found, though they are smaller in magnitude. 332 

Sherwood et al. (2014) claim this results from the difficulty in measuring simulated low-333 

level cloud characteristics. Observational constraints on LTMI are derived using 334 
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radiosonde data from selected stations in the West Pacific warm pool for the cloud-335 

scale mixing component, and re-analyses produced by numerical weather prediction 336 

centers for the large-scale mixing component. Observations indicate an LTMI value in the 337 

larger half of model estimates, suggesting the low-level cloud component of climate 338 

sensitivity is in the upper half of model results. 339 

The physical explanation offered for this emergent constraint is as follows. In the tropics, 340 

both shallow and deep circulations ventilate the boundary layer. The deep circulations are 341 

responsible for most global precipitation. The associated latent heat release balances 342 

atmospheric radiative cooling. Upon warming, the radiative cooling increase limits the 343 

precipitation increase and associated water vapor depletion from the boundary layer by 344 

deep circulations to only 2 – 4% per Kelvin (Held and Soden 2006). On the other hand, 345 

water vapor depletion by shallow cloud-scale circulations is not subject to an energetic 346 

constraint, since these circulations do not contribute appreciably to total precipitation. 347 

Instead, it increases with the product of the lower tropospheric mixing rate and boundary 348 

layer specific humidity. If one assumes the rate of lower tropospheric mixing remains 349 

fixed as the climate warms, then the depletion of water vapor by shallow circulations will 350 

increase with boundary layer specific humidity. This increase follows Clausius-351 

Clapeyron, around 7% per Kelvin of boundary layer warming.  352 

These arguments imply that as the climate warms, shallow circulations assume a larger 353 

role relative to that of the deep circulations both in depleting boundary layer water vapor 354 

and balancing the addition of water vapor by evaporation from the ocean surface (whose 355 
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increase is limited to 2 – 4% per Kelvin). This leads to a relative humidity reduction in 356 

the boundary layer and a low-level cloud decrease. One can also take into account the 357 

fact that the strength of this reduction will be proportional to the amount of lower-358 

tropospheric mixing. Models with greater lower tropospheric mixing will exhibit a 359 

greater decrease in relative humidity and low-level cloud as the climate warms.  360 

Sherwood et al. (2014) provide some evidence for this mechanism by examining water 361 

vapor tendencies in the few models providing the necessary output. However, a full 362 

demonstration of this mechanism is not possible with existing multi-model archives. For 363 

example, multi-model diagnostics on the relative amounts of water vapor depletion by 364 

shallow and deep convection are not generally available. Also, it would be useful to 365 

perform a complete diagnosis of the boundary layer moisture budget in selected climate 366 

models and/or construct a toy model to illustrate how the amount of drying of the 367 

boundary layer with climate warming relates to the strength of low-level convective 368 

mixing. Separately, Zhang et al. (2013) provide indirect evidence for the small-scale 369 

mixing component of the Sherwood mechanism. They configured climate models as 370 

single-column models driven by expected large-scale environmental changes for low-371 

level clouds and found that models with more active shallow convection 372 

parameterizations simulate more positive low-cloud feedbacks.  373 

d. Other potential emergent constraints 374 
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The three potential emergent constraints discussed above may eventually become true 375 

emergent constraints. They each have candidate physical explanations associated with 376 

them that are credible, even if work remains to determine which mechanisms are 377 

dominant and why. Other potential emergent constraints for cloud feedbacks and climate 378 

sensitivity have also recently appeared in the literature (Table 1). We deem these 379 

constraints to be less well-developed, primarily because they lack the beginnings of a 380 

convincing physical explanation. However some fail even the subsidiary criteria 381 

proposed above. An exception though is that of Zhao (2014) who offers a well-developed 382 

physical argument based upon the precipitation efficiency of moist convection, but 383 

demonstrates the constraint only within a multi-physics ensemble of a single climate 384 

model. It is hard a priori to know how many emergent constraints there could be, given 385 

the serendipitously assembled nature of the climate model ensembles. For example, there 386 

may be redundancies among some current climate predictors (Caldwell et al. 2014) and in 387 

this regard, one might expect that the constraints of Qu et al. (2014) and Sherwood et al. 388 

(2014) to be redundant because both involve subtropical marine boundary layer clouds 389 

with somewhat related physical explanations. However, these constraints are not at first 390 

glance obviously redundant since there is a poor inter-model correlation between 𝜕!""
𝜕!!" !"#

 391 

and LTMI or its small-scale mixing component (Qu, personal communication).  392 

An interesting aspect of the three well-developed emergent constraints presented above is 393 

that they all involve low-level clouds. Is there any fundamental reason to expect low-394 

level clouds to exhibit greater potential for emergent constraint behavior? Perhaps the 395 

boundary layer’s tendency to react quickly to its local (as opposed to non-local) 396 
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environment parameters may make it easier for the long-term response of low-level 397 

clouds be predicted from its behavior on short-time scales. Alternatively, the 398 

preponderance of emergent constraints for low-level clouds may simply stem from 399 

greater attention to low-level clouds, given their major role in contributing to inter-model 400 

spread in cloud feedbacks. In principle, we do not see reason why there could not be 401 

emergent constraints for other cloud types. For example, the relationship between tropical 402 

high-cloud altitude and the vertical profile of clear-sky radiative cooling might form the 403 

basis for an emergent constraint (Hartmann and Larson 2002). However, an emergent 404 

constraint for high-cloud altitude may not exist if there is not appreciable inter-model 405 

spread in its future climate prediction – a necessary condition for the existence of an 406 

emergent constraint. In fact, the large spread in low-cloud feedbacks may be another 407 

reason it has been relatively easy to find possible emergent constraints for these clouds. 408 

4. Implications of emergent constraints for climate models, observations, and 409 

prediction 410 

Emergent constraints, if deemed reliable, have important implications for climate models, 411 

climate observations, and climate predictions.  412 

Prioritization of climate model development. Emergent constraints point to aspects of a 413 

model’s simulation of current climate that are important for climate prediction. This is 414 

particularly helpful in the area of clouds, for it is difficult to know which of their many 415 

attributes deserve most attention. With an emergent constraint, modelers can focus on 416 
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improving the fidelity of the relevant process, knowing a reduction in inter-model 417 

spread will result when it is simulated under anthropogenic forcing. Of course, it may be 418 

challenging to use guidance from an emergent constraint if the current climate parameter 419 

is not specific to a piece of model physics but is the outcome of interactions among many 420 

pieces. Furthermore, all of this presumes that model developers will pay attention to 421 

emergent constraints. In this regard, it is worth noting that the diversity across models in 422 

snow-albedo feedback did not narrow in CMIP5 models after the emergent constraint for 423 

the feedback was found in CMIP3 models (Hall and Qu 2006).  424 

Prioritization of climate observations. Emergent constraints point to potentially 425 

observable quantities that might help constrain model predictions. Some current climate 426 

parameters, such as small-scale and large-scale mixing in shallow-depth atmospheric 427 

circulations or the precipitation efficiency of moist convection, may not be easy or even 428 

possible to measure. Current climate parameters relying on the relationship between 429 

variables diagnosed from inter-annual variability require stable long-term datasets, 430 

another practical barrier. A related issue is the size of the observational uncertainty 431 

relative to inter-model spread. Only when observational uncertainty is less than inter-432 

model spread will projections be constrained, setting a minimum threshold for 433 

observational length and quality.  However, for the three relatively robust emergent 434 

constraints discussed in this article, a significant fraction of climate models lie outside the 435 

nominal uncertainty bounds of the observational estimates, implying inter-model spread 436 

in future climate projections can be meaningfully constrained (Figures 1, 3, and 4). 437 
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However, these uncertainty estimates deserve greater scrutiny from observational 438 

scientists, as it is not clear that all sources of uncertainty have been accounted for. 439 

Narrowing climate predictions. If emergent constraints with a solid physical basis and 440 

precise observational estimates are found, how much trust should then be placed in the 441 

climate prediction? One might be reluctant to trust the new ensemble with its reduced 442 

spread, because some deficiency could be present in all models causing a systematic bias 443 

to their predictions. For example, cloud feedbacks from middle-level cloudiness or 444 

tropical anvils associated with mesoscale convective systems may be missed simply 445 

because climate models largely fail to simulate these clouds (Klein et al. 2013, Tsushima 446 

et al. 2013).  Nonetheless, the constrained model predictions should be more trustworthy 447 

than before, because a source of model error has been identified and reduced. Emergent 448 

constraints will never make the models perfect. Instead they allow limited community 449 

resources to be focused on the model biases that are most consequential for climate 450 

change. So far, when the emergent constraint technique has been applied to cloud, the 451 

results have indicated a potential narrowing of uncertainty, and a shift in the most likely 452 

outcomes.  Each of the three better-developed emergent constraints we discuss here 453 

suggests higher values of cloud feedbacks and climate sensitivity.  454 
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Tables 587 

Reference Current Climate Predictor Future Climate Predictand 
Well-Developed Emergent 
Constraints 

  

Gordon et al. (2014) The sensitivity of low-level cloud 
optical depth with temperature 

Low-level cloud optical depth 
feedback in different latitude 
regimes 

Qu et al. (2014) The sensitivity of subtropical 
low-level cloud cover to sea 
surface temperature 

The 21st century change in 
subtropical low-level cloud cover 

Sherwood et al. (2014) The strength of small-scale and 
large-scale lower tropospheric 
mixing 

Equilibrium climate sensitivity 

   
Less Well-Developed Emergent 
Constraints 

  

Volodin (2008) Difference in cloud amount 
between tropics and southern 
middle-latitudes 

Equilibrium climate sensitivity 

Volodin (2008) Subtropical relative humidity in 
the middle troposphere and the 
boundary layer 

Equilibrium climate sensitivity 

Trenberth and Fasullo (2010) Net radiation error for the 
Southern Hemisphere 

Equilibrium climate sensitivity 

Fasullo and Trenberth (2012) Middle-tropospheric relative 
humidity in subtropical 
subsidence zones  

Equilibrium climate sensitivity 

Klein et al. (2013) Skill metric for the simulation of 
the climatological distributions of 
cloud height and reflectivity 

Net and shortwave global mean 
cloud feedbacks 

Zhao (2014) Precipitation efficiency of moist 
convection 

Global mean cloud feedbacks 

 588 

Table 1. Recent possible emergent constraints for cloud feedbacks and climate sensitivity  589 
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Figures 590 

 591 

Figure 1. Scatterplot of the change in surface albedo Δαs per degree of surface 592 
temperature ΔTs warming for Northern Hemisphere land masses in the context of climate 593 
change versus that in the context of the seasonal cycle from CMIP3 (blue circles) and 594 
CMIP5 models (red circles). The dashed line is the best-fit regression line and the 595 
correlation coefficients for each model ensemble are indicated in the lower right corner. 596 
The thin vertical line is the observed estimate for the seasonal cycle and the gray shading 597 
surrounding this line is the statistical uncertainty of the observed estimate. (From Qu and 598 
Hall 2014)  599 
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  600 

Figure 2. (a) Relationship in various climate regimes of CMIP3 and CMIP5 models 601 
between the low-level cloud optical depth (τlow) feedback (in units of K-1) predicted from 602 
the relationship of τlow to surface temperature derived from current climate variability (on 603 
the abscissa) with the actual simulated climate change τlow feedback (on the ordinate). 604 
More specifically, the “Feedback Predicted from Control Climate” is equal to the product 605 
of the derivative of the natural logarithm of τlow with respect to surface air temperature in 606 
each region derived from current climate variability with the ratio of simulated regional 607 
to global-mean surface air temperature increase in CO2-induced climate warming 608 
simulations. The “Actual Climate Change Feedback” is defined as the regional change in 609 
the natural logarithm of τlow actually simulated under CO2-induced climate warming 610 
normalized by the increase in global mean surface air temperature. Each symbol displays 611 
the value for a single CMIP3 or CMIP5 climate model with different shape-color 612 
combinations identifying the climate regime over which the relationship is calculated. 613 
The orange dashed line is the least squares regression line using the data from all regions 614 
together, and the black thin dashed line is a one-to-one line plotted for reference. The 615 
table inset displays the values of the linear correlation coefficient squared for regressions 616 
in individual climate regimes and for a regression using the data from all regions. The 617 
colors for the text in the table inset match those used by the symbols. (b) As in panel (a) 618 
but for the in-cloud value of condensed water content (CWC). (From Gordon and Klein 619 
2014)  620 



 

 

 

36 

 621 

Figure 3. (a) Scatterplot of the Sea-Surface Temperature (SST) contribution averaged 622 
over the 5 primary subtropical marine stratocumulus regions versus actual 21st century 623 
fractional Low-Level Cloud Cover (LCC) changes averaged over the 5 regions. Solid line 624 
in each diagram represents a least-squares fit regression line with CMIP3 models color-625 
coded in blue and CMIP5 models in red. Correlation coefficients for each model 626 
ensemble are indicated in the lower right corner. For each model, the SST contribution is 627 
defined as the product of that model’s sensitivity of LCC to SST determined from inter-628 
annual variability and the model’s SST change over the 21st century. Note that the 629 
sensitivity of LCC to SST is calculated as a partial derivative holding the value of the 630 
Estimated Inversion Strength fixed. (b) As in panel (a) except that the abscissa is the SST 631 
sensitivity of LCC and the ordinate is the 21st century LCC change divided by the SST 632 
change over the 21st century. The thin vertical line is the observed estimate and the gray 633 
shading surrounding this line is the statistical uncertainty of the observed estimate. (From 634 
Qu et al. 2014)  635 
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 636 

Figure 4. Scatterplot of the Lower-Tropospheric-Mixing-Index (LTMI) on the abscissa 637 
and the Equilibrium Climate Sensitivity (on the ordinate) from the 43 CMIP3 (circles) 638 
and CMIP5 models (diamonds). Linear correlation coefficients r are given in the lower 639 
left corner of LTMI with the Equilibrium Climate Sensitivity and the total system 640 
feedback, respectively. Two observational estimates with error bars for LTMI are shown 641 
near the abscissa axis with central values indicated by the unfilled square and diamonds. 642 
(From Sherwood et al. 2014) 643 
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 645 

Figure 5. Schematic diagram illustrating tropical tropospheric circulations. Deep 646 
overturning circulations that strongly couple to the hydrological cycle and atmospheric 647 
energy budget are shown by solid lines. Lower-tropospheric mixing at both small and 648 
large-scales are shown by dashed lines. A mixing-induced low-level cloud feedback is 649 
proposed to result from the increasing relative role of lower-tropospheric mixing in 650 
exporting humidity from the boundary layer as the climate warms. The increased relative 651 
role of lower-tropospheric mixing under climate warming depletes the layer of the water 652 
vapour needed to sustain low-level cloud cover. (From Sherwood et al. 2014) 653 


